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Abstract 

Background:  Centronuclear myopathies are severe rare congenital diseases. The clinical variability and genetic heter-
ogeneity of these myopathies result in major challenges in clinical trial design. Alternative strategies to large placebo-
controlled trials that have been used in other rare diseases (e.g., the use of surrogate markers or of historical controls) 
have limitations that Bayesian statistics may address. Here we present a Bayesian model that uses each patient’s own 
natural history study data to predict progression in the absence of treatment. This prospective multicentre natural his-
tory evaluated 4-year follow-up data from 59 patients carrying mutations in the MTM1 or DNM2 genes.

Methods:  Our approach focused on evaluation of forced expiratory volume in 1 s (FEV1) in 6- to 18-year-old children. 
A patient was defined as a responder if an improvement was observed after treatment and the predictive probabil-
ity of such improvement in absence of intervention was less than 0.01. An FEV1 response was considered clinically 
relevant if it corresponded to an increase of more than 8%.

Results:  The key endpoint of a clinical trial using this model is the rate of response. The power of the study is based 
on the posterior probability that the rate of response observed is greater than the rate of response that would be 
observed in the absence of treatment predicted based on the individual patient’s previous natural history. In order to 
appropriately control for Type 1 error, the threshold probability by which the difference in response rates exceeds zero 
was adapted to 91%, ensuring a 5% overall Type 1 error rate for the trial.

Conclusions:  Bayesian statistical analysis of natural history data allowed us to reliably simulate the evolution of 
symptoms for individual patients over time and to probabilistically compare these simulated trajectories to actual 
observed post-treatment outcomes. The proposed model adequately predicted the natural evolution of patients over 
the duration of the study and will facilitate a sufficiently powerful trial design that can cope with the disease’s rarity. 
Further research and ongoing dialog with regulatory authorities are needed to allow for more applications of Bayesian 
statistics in orphan disease research.
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Background
In the past two decades, there has been a dramatic 
increase in development of therapies and therefore in 
clinical trials of patients with rare diseases. The number 
of publications in this area rose by more than five-fold 
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between the years 2003 and 2018 [1]. Furthermore, the 
number of molecules in clinical development increased 
by five-fold between 2013 and 2018 [2]. However, there 
are many challenges related to conducting clinical stud-
ies on rare diseases, such as heterogeneity in pathophysi-
ology or clinical presentation, the overdue window of 
treatment opportunity in some conditions, and the dif-
ficulties in conducting adequately powered trials in rare 
diseases where the number of patients is low. The chal-
lenge of recruiting a large population needed to conduct 
a placebo-controlled study may lead to an enlargement of 
inclusion criteria and thus an increase of the heterogene-
ity of the population.

In the context of neuromuscular diseases, several 
strategies have been used to gain regulatory approval of 
orphan drugs without conducting large, placebo-con-
trolled trials. These include the use of surrogate mark-
ers such as dystrophin in the clinical trial of eteplirsen 
in patients with Duchenne muscular dystrophy [3] and 
globotriaosylceramide in the clinical trial of agalsidase 
beta in patients with Fabry disease [4]. Historical controls 
were used during clinical testing of onasemnogene abe-
parvovec-xioi in spinal muscular atrophy [5] and alglu-
cosidase alfa in Pompe disease [6], and a priori-designed 
natural history studies were used in the clinical evalua-
tion of risdiplam in patients with spinal muscular atrophy 
type 2 [7]. However, these strategies have limitations.

Surrogate markers (also called surrogate endpoints) 
are substitute outcomes that are studied when a desired 
primary clinical endpoint such as overall survival takes 
too long to observe or is ethically unjustifiable [8]. In 
the cases of eteplirsen and golodirsen, two antisense oli-
gonucleotides that induce skipping of exons 51 and 53, 
respectively, of the dystrophin pre-mRNA, the surrogate 
nonclinical endpoint was the induction of truncated 
dystrophin production [9, 10]. The U.S. Food and Drug 
Administration (FDA) approved the drugs in 2016 and 
2019, respectively, under the accelerated approval pro-
gram after concluding that enhanced dystrophin expres-
sion was reasonably likely to result in clinical benefit. 
Neither of these two drugs were, however, approved by 
the European Medicines Agency (EMA), which requires 
that a surrogate endpoint first be validated by showing a 
correlation between the surrogate endpoint and a clinical 
benefit [11]. Furthermore, not all diseases have sensible 
surrogate endpoints and, in some cases, surrogate end-
points have been called into question based on later stud-
ies. In the early stages of the HIV/AIDS epidemic, change 
in CD4+ T cell count was used as a surrogate marker in 
several trials, but this measure was eventually shown to 
be only weakly associated with survival [12].

In the examples of historical cohorts cited above, sur-
vival and need for ventilation support of patients with 

Pompe disease treated with alglucosidase alfa [13], and 
motor function scores and motor milestones in spinal 
muscular atrophy patients treated with onasemnogene 
abeparvovec-xioi [14] were compared to the natural 
history of the diseases. To show the efficacy of a drug in 
a retrospective cohort study, however, the drug’s effects 
must be substantial, since other factors, such as a dif-
ference in standard of care or a placebo effect, may also 
explain differences between treated patients and histor-
ical cohorts.

The FDA has acknowledged the fact that rare disease 
clinical trials necessitate innovative designs that make 
use of, for example, external control patients and infor-
mation on disease progression from natural history 
studies to improve the analytical model [15]. Accord-
ingly, an alternative strategy is the use of Bayesian sta-
tistics [16]. Bayesian methods permit the reallocation 
of the probability of an explanation following the acqui-
sition of new data related to a previously selected set of 
possible explanations. The Bayesian approach permits 
the borrowing of strength from additional informa-
tion sources including, for example, historical controls 
from earlier randomized studies, data from disease 
registries, natural history studies and other nonrand-
omized sources, and expert medical opinion. Although 
non-Bayesian methods may also be used to compare 
treated patients with existing dataset or to follow evo-
lution of disease at a population level, the Bayesian 
framework is more convenient for deriving prediction 
intervals with complex stochastic processes such as the 
beta distribution at both the population and individual 
levels [16]. The result is a gain in study power and cor-
responding reduction in sample size needed. There is 
also a corresponding modest increase in overall Type I 
error (i.e., the false positive rate) that is typically esti-
mated and controlled via pre-trial simulation studies. 
Bayesian methods have been discussed by both the 
EMA [17, 18] and the FDA [15, 19–21] with the conclu-
sion that Bayesian methods offer a statistically accept-
able approach, especially in rare and paediatric disease 
settings.

In this article, we leverage Bayesian methods to uti-
lize a trial enrolee’s own personal natural history study 
(NHS) data to supplement recorded trial outcomes. Our 
NHS was a prospective international study on X-linked 
and autosomal dominant centronuclear myopathy, which 
followed Good Clinical Practice and systematic source 
data verification. Patient forced expiratory volume in 1 s 
(FEV1), assessed according to EU and US recommenda-
tions, and time on ventilator were recorded at every visit 
[22]. The Bayesian model reduced the necessary sample 
size while controlling overall Type I error. Importantly, 
the model is hierarchical, in that it can estimate both 
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individual and overall population-level outcome trajecto-
ries and treatment effects.

We applied our hierarchical Bayesian modelling 
approach to the field of centronuclear myopathies 
(CNMs). This is a group of rare congenital myopathies 
with a highly variable clinical presentation and substan-
tial genetic heterogeneity. Because of rarity and high 
variability, the incidence of centronuclear myopathies is 
not well known. However, the incidence of its most fre-
quent and severe form, X-linked myotubular myopathy 
(XLMTM), is approximately 1 in 50 000 new-born males 
[23]. The diagnosis is suggested by the central position of 
nuclei in muscle biopsies and clinical features. X-linked, 
autosomal recessive and autosomal dominant forms of 
CNM have been identified. The X-linked form is usually 
more severe, and symptoms are present at birth, yet a 
broad clinical heterogeneity is observed. The main causal 
mutations are distributed throughout the genes encod-
ing myotubularin (MTM1) for XLMTM (OMIM: 310400) 
[24], dynamin 2 (DNM2) [25] and amphiphysin 2 (BIN1) 
[26] for the autosomal dominant form (OMIM: 160150), 
and amphiphysin 2 (BIN1) [27] for the autosomal reces-
sive form (OMIM: 255200). The clinical traits of CNM 
include hypotonia, external ophthalmoplegia, and respir-
atory deficiency, which can be severe and life-threatening 
in the XLMTM congenital form [22, 28]. Patients who 
survive beyond the neonatal period live with a high dis-
ease burden: a majority require the use of a wheelchair, 
feeding tube, and ventilation support. Additionally, res-
piratory function is also altered in patients who do not 
need ventilator support and respiratory complications 
are the most frequent cause of death [29, 30]. Despite 
their rarity and their heterogeneous genotype and phe-
notype, CNMs are currently the targets of several clini-
cal and pre-clinical development efforts that make them a 
paradigm for the need of alternative statistical strategies 
in clinical trials [31].

Methods
Bayesian disease progression model
In the particular setting of rare diseases, Bayesian models 
can be used to predict disease progression based on end-
points envisaged in the considered trial. The steps of this 
strategy can be summarized as follows:

1.	 Bayesian disease progression model A hierarchical 
Bayesian disease progression model based on NHS 
data is developed and documented. The hierarchi-
cal model (sometimes called a mixed-effects model) 
permits estimation of trajectories for each patient as 
well as evaluation of patient-to-patient variability and 
heterogeneity in these trajectories. Mathematically, 

the observed response yij , scaled between 0 and 1, is 
defined as:

where the beta distribution is defined by the parame-
ters aij and bij (where i indicates the subject and j the 
time), which are defined, respectively, as the mean µij 
and “the sample size” ν of the distribution as follows:

	 The parameter νij is estimated from the data, and 
the mean µij is defined as a mixed model with logit-
link function:

where T is a constant to centre time. The variability 
in the model can be derived using properties from 
the beta distribution. The evolution of the mean is 
linear on the logistic scale. This implies that except 
near the boundary the evolution of the response is 
approximately linear. This is meaningful for short 
periods of time in the context of CNM-related dis-
ease as supported by the data.

	 On a long time scale, the evolution of patients is 
probably not linear, but when reduced to a trial com-
patible-time scale of 6 months or 1 year, linearity is a 
reasonable expectation. A similar assumption of line-
arity is regularly accepted, for instance, when evaluat-
ing Duchenne patients with the 6-min-walk-distance 
when the time window is on the order of a year even 
though this is a measure with a non-linear inverse 
U-shaped evolution over the life-time course [32].

2.	 Individual prediction Combining the NHS data 
with the run-in data from patients enrolled but not 
included in the NHS allows the derivation of indi-
vidual predictive distributions of the endpoint or 
endpoints over time after treatment administration. 
Only data pre-treatment and from the NHS are con-
sidered. Stated differently, no data gathered post-
administration is included in the model.

3.	 Identifying responders The joint predictive proba-
bility of improvement (increase or decrease over time 
depending on the endpoint measured) is computed 
for each patient. If the joint predictive probability of 
the patient’s observed improvement is smaller than 
or equal to 0.01, then a patient is declared to be a 
responder. We adopted this predictive probability-
based definition of responder since (a) there is little 

yij ∼ Beta
(

aij , bij
)

aij = µij ∗ νij

bij =
(

1− µij

)

∗ νij

χij = αi + βi ∗
(

T + tj
)

µij =
1

1+ exp
(

−χij
)
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consensus on what constitutes a clinically relevant 
change and (b) the assessment of the primary end-
point (FEV1 versus time on ventilator) will differ 
from patient to patient depending on age and disabil-
ity level.

4.	 Control of trial Type I error Using this definition of 
responder, the predictive distribution of the rate of 
response is simulated under the null hypothesis of 
no treatment effect. A statistical significance thresh-
old value is then determined to guarantee an overall 
Type I error of less than or equal to 5%.

The same model was applied to some potential primary 
and secondary endpoints (FEV1, FVC, CHOP-INTEND, 
MFM20, MFM32, and time on respirator) by age class 
and by genotype. The model used is a hierarchical Bayes-
ian model with beta distribution likelihood and a logit 
link function. Random effects for each patient were used 
to model the differences in level and progression of the 
disease. Since all responses are scores bounded by an 
upper and lower value, the beta distribution is appro-
priate for the modelling, as it is readily scaled to be 
bounded between any two real numbers. The beta thus 
ensures that predictions do not fall outside the possible 
score range. The model was readily fit using Proc MCMC 
in SAS 9.4. Diffuse and non-informative prior distribu-
tions were used for all unknown parameters so that the 
observed data drove our model fits.

NHS population
The NHS population consisted of 59 patients recruited 
in Europe [22]. Of the 59 patients, 15 have a DNM2 
mutation and 44 patients have a mutation in the MTM1 
gene (Table 1). These patients had been evaluated every 
3 months under 2 years of age, every 6 months between 
2 and 6  years of age, and, for patients older than 6, at 
6 months and 12 months after enrolment and then once a 
year. The study was prospective, and patients were mostly 
evaluated by the same physiotherapist who travelled to 
the different sites. If the principal physiotherapist was not 
available, the patients were evaluated by a physiotherapist 
trained and overseen by the principal physiotherapist. 
Data were controlled and monitored on a regular basis 
by the sponsor to achieve the same data quality as in a 
clinical trial. Additional patients have been recruited but 
were not included in the NHS data used here. Data were 
prospectively acquired using strict standard operating 
procedures and were systematically controlled. The study 
was approved by the relevant ethical review boards and 
by the French Health Authority and was registered on 
clinicaltrials.gov (NCT02057705). Its European extension 
was registered on clinicaltrials.gov under NCT03351270. 

Additional details are available in a previous publication 
[22].

Results
Adequacy of the disease progression model
The Bayesian methodology was applied to the domain 
of respiratory function, which is evaluated with different 
assessments (pulmonary function tests and time on ven-
tilator) depending on the age and the respiratory status 
of the patient. FEV1 responses in children between 6 and 
18  years of age are presented here. Although applicable 
to patients with DNM2 or MTM1 mutations, only the 
set of results for patients with the MTM1 mutation are 
presented for sake of clarity.  Other endpoint measures 
(time on ventilator for children and two assessments in 
the adult population, FEV1 and time on ventilator) are 
shown in additional figures. Additional analysis could be 
done on the collected motor item data; however, this will 
require a new set of multinomial modelling and will be 
done in future research.

Based on the quality of fit, the model based on NHS 
data accurately describes the progression of the FEV1 
scores with age in children (Fig. 1), FEV1 scores in adults 
(see Additional file 1), time on ventilator in children (see 
Additional file  2), and time on ventilator in adults (see 
Additional file 3).

Predictive distribution and responder definition
The Bayesian disease progression model as defined above 
can be used to define responders in a clinical trial. Using 
the Bayesian model, it is possible to derive the predictive 
distribution of the score values after treatment under the 
assumption that patients do not experience a treatment 
effect and continue their progression naturally as seen 
during the NHS. Figure 2 is a representative example of 
prediction of FEV1 score for one patient with 26 months 

Table 1  Number of  patients in  NatHis-CNM with  MTM1 
and DNM2 mutations by gender and age

a  No patients with BIN1-related CNM have been enrolled

CNM mutationa

MTM1 DNM2

Gender

 Males 41 6

 Females 3 9

Age (years)

 0–2 12 0

 2–6 10 1

 6–16 13 1

 > 16 9 13



Page 5 of 11Fouarge et al. Orphanet J Rare Dis            (2021) 16:3 	

of NHS data. Based on the observed NHS, a disease pro-
gression model is predicted (dotted line in Fig.  2). The 
joint probability using the (trivariate) predictive distri-
bution can be computed based on actual measurements 
(green dots in Fig. 2). If the predictive probability of the 

measured improvements is smaller than 0.01 (as it is the 
case here, since the green dots lie in the upper tail of 
the predictive distribution), the patient is declared to be 
a responder. Our choice of a 0.01 predictive probability 
cut-off to define responders comes close to optimizing 

Fig. 1  Adequacy of model fit for FEV1 (%) in children. Data for each subject is shown in blue. Model fit is shown in red

Fig. 2  Predicted trajectory of FEV1 scores and actual scores for a patient with 26 months of NHS data. The conditional predictive distributions at 2, 
4, and 6 months after treatment are represented using the black intervals. FEV1 scores observed during the study are in green. The individual FEV1 
scores are within the 95% prediction intervals, but the joint probability to observe all 3 occurrences is less than 0.01
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the design’s power. A threshold substantially lower than 
this would not allow us to detect treatment effects at 
all, whereas a higher (less stringent) threshold would 
detect many deviations, making it hard to distinguish 
truly responding patients from those who simply appear 
to “respond” due to high visit-to-visit variability in their 
trajectories.

In Fig. 3, the predictive distributions of the score values 
are shown for a simulated clinical trial including seven 
patients with NHS, and five patients for whom data are 
available only for a run-in period prior to treatment initi-
ation. For the patients with NHS data, the predictions are 
rather consistent over the 6 months following the start of 
the treatment. However, for the patients with only run-
in data (the first 5 patients in Fig. 3), the distribution of 
predicted data enlarges rapidly over time, reflecting that 
issue that limited historical data are available and predic-
tion of evolution is unreliable. Although longer run-in 
periods produce a more stable projection, the influences 
of the number and timing of such points on the model’s 
predictive capabilities are marginal. There is also a mod-
est effect of proximity to the upper or lower bound-
ary on interval width (compare patients 111 and 113 in 
Fig. 3). Using this methodology, a patient is identified as 
a responder based on that individual’s predictive distri-
bution, which accounts for the uncertainty in each indi-
vidual’s disease progression.

Since response depends on each patient’s NHS, the 
endpoint measure (e.g., FEV1 or time on ventilator), and 
departure from their predicted disease progression, the 
responder statuses for all the patients can be combined 

into one single computation, independently of the age 
and endpoint measure used. Since data from patients 
with NHS will be combined with that from patients with 
only run-in data, there is a slight borrowing of informa-
tion from the NHS patients to the run-in only patients. 
This borrowing is, however, moderate. The rate of 
responders and non-responders is the key endpoint for 
the trial design and influences its power, required sample 
size, and other key operating characteristics. There is no 
consensus to define what difference in FEV1 is clinically 
meaningful in a patient with CNM. Here, we considered 
8% a clinically significant improvement for FEV1, since it 
is the annual rate of decline in teenagers with Duchenne 
muscular dystrophy [33]. The same approach could be 
conducted by defining another lower or higher threshold.

Sample size computation
Using information about the number of responders from 
previous studies and assuming that the rate of response 
will follow a beta distribution, the conditional assurance 
(or expected power) of the posterior distribution of the 
rate of responders can be computed. Since there are no 
control groups, the power can be computed as the pos-
terior probability that the rate of responders observed 
is greater than the rate of responders that would be 
observed assuming no change in the trajectory and 
using the observations drawn from the same predictive 
distribution.

Under the assumptions that each patient can act as 
their own control and that there will be no change in a 
patient’s trajectory without intervention, the rate of 

Fig. 3  Distributions of FEV1 scores and predictions for seven patients from the NHS (2- and 3-digit identification numbers) and five patients for who 
only a run-in period data are available
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response that naturally occurs accounting for visit-to-
visit variability can be assessed. By simulating a great 
number of studies with 12 patients and sampling individ-
ual values at the future visits, it is possible to determine if 
a patient is a responder or not. Note that these results are 
independent of the endpoint measure chosen. The rate 
of response will always have this distribution, as it is only 
linked to our definition of a responder, which is simply 
based on probabilistic reasoning (joint probabilities).

In order to appropriately control the design’s Type 1 
error, and due to the relatively small sample sizes, the 
probability by which the difference in responder rates 
needs to exceed zero must be adapted. In other words, 
to limit the probability of falsely declaring a treatment 
effect when a natural response is observed, the number of 
responders needs to exceed a certain threshold. Here, a 
threshold of 91% ensured a 5% type 1 error rate. Figure 4 
shows an assurance curve as a function of the increase 
in the rate of response given a posterior distribution of 
the rate obtained from historical knowledge. When the 
true difference in the responder rates is 0, the Type I 
error is controlled at the traditional 0.05 level. Additional 
responders imply responders beyond those expected if 
left untreated. The horizontal axis corresponds to treat-
ment effect, which is the difference in the proportion of 
responders in treated and untreated groups. The verti-
cal axis gives the assurance (Bayesian power), which is 
the probability that the increase will be detected. Thus, 
an increase of 0 corresponds to the null hypothesis of no 
treatment effect, and the observed assurance of 0.05 at 
this value is the trial’s Type I error.

Discussion
We have reported the application of Bayesian statistics 
to model the future natural history of a rare disease, cen-
tronuclear myopathy. To build this model, we used data 
from 4-year follow-up of 59 patients carrying mutations 
in the MTM1 or DNM2 genes. The model predicts indi-
vidual patient trajectories for several endpoint measure 
scores based on the observations of a natural history 
study, and its quality of fit suggests that it adequately rep-
resents natural evolution of the disease.

Bayesian statistics offer the opportunity to compare 
the outcomes of patients at a given time after treatment 
to the simulated endpoint scores at the same given time 
without a treatment. Having predicted an individual 
trajectory with a certain probability allows us to esti-
mate the probability that an observed deviation from 
that predicted trajectory would have happened without 
intervention. Consequently, our Bayesian incorporation 
of auxiliary data (NHS and run-in) offers an alternative 
to the comparison of treated patients with an untreated 
group, which can be challenging in small and heteroge-
neous cohorts, two conditions characteristic of clinical 
research in rare disease.

Bayesian statistics have previously been used in the 
field of rare diseases: Quintana et al. developed a Bayes-
ian model of disease progression in GNE myopathy based 
on quantitative muscle strength data [34]. Ramanan et al. 
proposed a Bayesian design for a phase 2 trial to compare 
adalimumab versus pamidronate in chronic nonbacterial 
osteomyelitis [35]. In the currently ongoing Sarcome-13 
trial, a phase 2 trial of mifamurtide in newly diagnosed 
high-risk osteosarcoma, a Bayesian analysis is planned 
that will incorporate available historical data into the trial 
[36]. A review of Bayesian methods in rare disease set-
tings has recently been published [37].

The natural evolution of CNMs consists of an overall 
stability of the patients’ parameters [28], and, consist-
ently with this, the model shows non-progression of the 
disease. Therefore, this type of analysis will not identify a 
stabilising effect in centronuclear myopathy. This will be 
true whatever the design of the trial. As long as the con-
ditions of the patients do not deteriorate over the period 
of time during which a trial can be organised and com-
pleted (generally 2 years), a long-term stabilizing effect of 
the treatment will not be possible to demonstrate.

One of the main limitations of our study is that it relies 
on a restricted and heterogeneous sample size. How-
ever, this small and heterogeneous sample size is actually 
the driving rationale of the Bayesian approach as small 
sample sizes are typical in the fields of rare diseases [38, 
39]. In the field of centronuclear myopathy, the study 
described is by far the largest prospective cohort to date. 
Indeed, existing studies that we found on the natural 

Fig. 4  Assurance curve as a function of increase of rate of response 
for sample sizes of 12 (blue) and 24 (red)
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history, genotype, and phenotype of patients living with 
centronuclear myopathy that used larger cohorts of up to 
120 patients were mostly retrospective or involved only a 
punctual intervention to identify mutations [40–42].

An additional limitation resides in the heterogeneous 
follow-up. Some patients were followed for 1 year, some 
for 4  years. The model could be used for a therapeutic 
trial with an even more limited follow-up, however, as 
clinical trials generally last about 1  year. Therefore, not 
all of the model’s trajectories derive from the observed 
results, but the trajectories of the run-in patients borrow 
information from the natural history study of patients 
with longer follow up times. Again, this limitation is 
intrinsic to the nature of a very rare disease. The inclu-
sion of all patients at the same time is extremely challeng-
ing in part due to geography—the whole of Europe in the 
present study. As the borrowing of data is limited and the 
Type I error is well controlled, this borrowing is justified. 
The Type I error is the rejection of a true null hypoth-
esis (i.e., a false positive). In this case, a Type I error 
results in the conclusion that a treatment is effective 
when the patient’s response is in fact natural, and appar-
ent improvement is due merely to visit-to-visit variability. 
To limit this, our method adapts the threshold difference 
between the predicted and observed response rates that 
is required to declare a treatment effect.

Because the natural evolution of the patients is not nec-
essarily linearly correlated to previous history, the reli-
ability of the model’s prediction will decrease with time. 
As is shown by the comparison of patients with con-
siderable NHS data to those with run-in data, the more 
data available, the more stable the predictive distribu-
tion. Although the reliability of the model is therefore 
limited by the duration of the natural history study, the 
same limitation is found in a randomised controlled trial 
that can only show treatment efficiency for the duration 
of the trial. We acknowledge that by avoiding randomiza-
tion and blind assessment in order to minimize sample 
size, we are forfeiting some protection against possible 
systemic biases that could result from assumption that 
the natural evolution is linear, and the possibility of a 
placebo effect. In particular, the study’s Type I error and 
power will obviously be affected by model misspecifica-
tion. Manifestations of a placebo effect could include a 
positive adjustment to the intercept starting at the time 
of the intervention, a slight increase in slope, or even a 
departure from linearity (all on the logistic scale). Investi-
gations of such changes and their impacts were discussed 
in the recent poster presentation by Monseur et al. [43] 
and will be the subject of a future manuscript.

Though it is currently unclear how large the placebo 
effect can be in patients with CNMs, the placebo effect 
in other neuromuscular disorders has been described 

as mild and transient for spinal muscular atrophy and 
as non-existent for Duchenne muscular dystrophy [44]. 
The placebo effect observed in double-blind placebo-
controlled studies in spinal muscular atrophy patients, 
for instance, is limited in duration to up to 6 months [45]. 
In recent trials involving Duchenne muscular dystrophy 
patients, it has been demonstrated that natural history 
study data are highly comparable to data from patients 
treated with placebo [44]. The quality of fit of the model 
shows an adequate prediction of evolution over the time 
of the NHS. Therefore, it can be assumed that, during 
that clinical trial period, variations in evolution com-
pared to the natural history predictions will be due to 
a treatment effect rather than a lack of reliability of the 
model. However, the model does not predict rare events, 
such as a lower respiratory tract infection that would 
require a hospitalisation and that could induce a signifi-
cant functional decline. Mitigating this, the probability 
of these rare events is known. In a prospective study of a 
33-patient cohort over a 1-year period, 17 (52%) patients 
required a visit to the hospital for acute care, with a total 
of 38 visits (1.15 annual visit rate). Of visits to the emer-
gency room, 47% were due to fever or infection, and of 
the 34% that resulted in hospitalisation, 69% were due to 
fever or infection [29].

Bayesian incorporation of auxiliary data can reduce the 
number of patients necessary to conduct a study and the 
number of patients who must be given placebo, but can-
not deliver a conclusion with the same level of evidence 
as a full two-arm blinded study. Indeed, the model is 
constructed on the basis of NHS data in which no pla-
cebo effect is expected—from either the patient or from 
the evaluator perspective—and the evolution of patients 
after a given intervention could differ from the predicted 
trajectory due to a placebo effect. Having a limited num-
ber of patients on placebo or progressively switching 
patients from placebo to active treatment may overcome 
or mitigate this issue. In addition, a limited number of 
placebo-treated patients could also help to verify that 
untreated patients actually follow model predictions. A 
similar design is being used in Audentes’ ASPIRO trial, 
an open-label trial for gene transfer therapy in XLMTM 
(NCT03199469). In the extension phase of this trial, sub-
jects who were in the delayed treatment control group 
are administered the drug on trial after having completed 
their last visit as a control at Week 24, when the primary 
efficacy endpoint measures will have been assessed.

As in any clinical trial occurring in a very heterogene-
ous and rare population, selection biases may arise. It is 
important to note that, in order to minimise biases in 
the present study, all the centres were contacted when 
recruiting participants and a single physiotherapist was 
hired to travel and visit the European patients. Social 
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bias was also avoided by covering the patients’ costs. Fur-
thermore, data heterogeneity is already very large with 
patients covering the whole spectra of possible values on 
the scale under investigation. Although the risk of bias 
cannot be entirely mitigated, no fundamental differences 
are expected between the patients currently enrolled and 
those not.

The aim of Bayesian approach is not to lower the level 
of evidence required for drug approval in rare diseases, 
but rather to benchmark this level as close as possible to 
the one of drug development in more common diseases, 
taking into account the limited existing population and 
the heterogeneity in terms of age, genotype, and severity. 
In using an individual patient’s trajectory and borrowing 
information on day-to-day variability from the popula-
tion to more reliably predict the individual’s course of 
disease and then defining a response as deviation from 
this course, our model can estimate treatment efficacy 
across patients with different disease severities. Demon-
strating efficacy, even if moderate, in post-symptomatic 
patients may also justify moving to younger or pre-symp-
tomatic patients where the effect can be much more dra-
matic, given the better state of the targeted tissue. This 
has been clearly demonstrated in spinal muscular atro-
phy [46]: The effect demonstrated in a double-blind pla-
cebo controlled study in post-symptomatic patients [47] 
was much more dramatic in a pre-symptomatic popula-
tion [48], leading to newborn screening programs across 
the world [49] and a dramatic improvement in patients’ 
conditions. Similarly, the ability to demonstrate even a 
mild effect in a post-symptomatic population where an 
analysis between treated and placebo-controlled patients 
cannot be conducted for practical reasons can provide 
evidence supporting use of a therapy in a younger or pre-
symptomatic population that cannot be initially targeted 
by clinical development but who are likely to benefit the 
most and who are likely to have the best benefit to cost 
ratio from a payer perspective [50].

Conclusions
In summary, the major and innovative idea described 
here is to use Bayesian statistics in the development 
of disease progression models to construct individual-
level predictive distributions to identify the time point 
at which a patient’s response is expected. This type of 
analysis allows reliable simulation of the evolution of a 
patient’s response trajectory and comparison to observed 
outcomes after treatment, thus bypassing the issue of 
small and heterogeneous patient cohorts typical of clini-
cal trials in rare disease populations.

Bayesian statistics represent a methodologically 
valid and attractive option in the field of rare diseases 
that is increasingly accepted by regulatory authorities. 

However, we are not aware of any medication that has 
been approved based on a pivotal study conducted using 
a Bayesian natural history model. Future peer-reviewed 
publications of data from therapeutic trials that rely on 
this type of modelling as well as ongoing dialog with 
regulatory authorities will contribute to the broader use 
of this approach with consequent benefits to the lives of 
persons struggling with rare disease.
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